The Official WAEC 2025 Mathematics Objective Questions.

Click the link below after the 50 questions to view your solution.
  1. The volume of a cone of height 18 cm is 8,316 cm3. Find the base radius of the cone. [Take \(\pi = \frac{22}{7}\)]

    A. 21 cm

    B. 14 cm

    C. 28 cm

    D. 42 cm

  2. A square has diagonal length of 10 cm. Find the perimeter of the square.

    A. \(10\sqrt{2}\) cm

    B. \(15\sqrt{2}\) cm

    C. \(20\sqrt{2}\) cm

    D. \(25\sqrt{2}\) cm

  3. The height of 4 orange seedlings are: 2 cm, 5 cm, 7 cm and 10 cm. Calculate the variance.

    A. 7.2

    B. 6.0

    C. 8.5

    D. 9.1

  4. Two towns X and Y are located at points (–2, –5) and (3, 7) respectively. Calculate the distance between the two towns.

    A. 114 units

    B. 25 units

    C. 13 units

    D. 12 units

  5. Given that \((x^{-n})^4 = \frac{1}{x^6}\), find the value of \(n\).

    A. -2/3

    B. -3/2

    C. 3/2

    D. 2/3

  6. Solve: \(\frac{1}{3}(k - 4) - \frac{1}{2}(k + 1) < \frac{1}{6}\)

    A. \(k < -6\)

    B. \(k > -6\)

    C. \(k < -12\)

    D. \(k > -12\)

  7. In a class of 42 students, 21 offer History and 28 offer Government. If each student offers at least one of the two subjects, find the probability that a student selected at random from the class offers Government only.

    A. \(\frac{1}{6}\)

    B. \(\frac{1}{3}\)

    C. \(\frac{1}{2}\)

    D. \(\frac{3}{4}\)

  8. Consider the following statements:
    p: The weather is warm.
    q: The sun is shining.
    Which of the following correctly represents the statement "The sun is shining if and only if the weather is warm"?

    A. \(p \leftrightarrow \sim q\)

    B. \(\sim p \leftrightarrow q\)

    C. \(\sim q \leftrightarrow \sim p\)

    D. \(q \leftrightarrow p\)

  9. The bearing of F from G is \(064^\circ\). What is the bearing of G from F?

    A. \(128^\circ\)

    B. \(180^\circ\)

    C. \(244^\circ\)

    D. \(116^\circ\)

  10. Ajoke will be 31 years in \(x\) years time. If Ajoke is 6 years older than Chioma, find an expression for Chioma's present age.

    A. \(25 - x\)

    B. \(31 + x\)

    C. \(25 + x\)

    D. \(31 - x\)

  11. Simplify: \(\sqrt{200} - \sqrt{72}\)

    A. \(8\sqrt{2}\)

    B. \(4\sqrt{2}\)

    C. \(2\sqrt{2}\)

    D. \(10\sqrt{2}\)

  12. Simplify: \(\frac{2\frac{1}{3}+\frac{5}{2}-1}{12-11\frac{3}{4}}\)

    A. \(\frac{10}{3}\)

    B. \(\frac{14}{3}\)

    C. \(\frac{16}{3}\)

    D. \(\frac{17}{3}\)

  13. Given that \(x + y = 1\) and \(x + 3y = 5\), find the value of \((x^2 + 4xy + 3y^2)\).

    A. 1

    B. 5

    C. 10

    D. 25

  14. Write 0.0364891 in three significant figures and express the answer in standard form.

    A. \(3.65 \times 10^2\)

    B. \(3.64 \times 10^2\)

    C. \(3.64 \times 10^{-2}\)

    D. \(3.65 \times 10^{-2}\)

  15. The radius and height of a circular base cylinder are 8 cm and 14 cm respectively. Find its curved surface area. [Take \(\pi = \frac{22}{7}\)]

    A. 562 cm2

    B. 704 cm2

    C. 352 cm2

    D. 680 cm2

  16. An interior angle of a regular polygon is \(150^\circ\). How many sides has the polygon?

    A. 6

    B. 9

    C. 12

    D. 15

  17. Solve: \(d^2 - 4d - 96 = 0\)

    A. \(d = 8, 12\)

    B. \(d = -8, -12\)

    C. \(d = 8, -12\)

    D. \(d = -8, 12\)

  18. The interior angles of a triangle are in the ratio 2 : 5 : 8. Find the difference between the smallest and largest angles.

    A. \(12^\circ\)

    B. \(24^\circ\)

    C. \(48^\circ\)

    D. \(72^\circ\)

  19. The interior angles of a hexagon are \(107^\circ, (2x)^\circ, 150^\circ, 95^\circ, (2x - 15)^\circ\) and \(123^\circ\). Find the value of \(x\).

    A. 57

    B. 65

    C. 106

    D. 120

  20. Two ball bearings have volumes 1.6 cm3 and 5.4 cm3. Find the ratio of their surface areas.

    A. 4 : 9

    B. 2 : 3

    C. 5 : 12

    D. 8 : 27

  21. Given that \(21_x = 14_5\), find the value of \(x\).

    A. 4

    B. 5

    C. 6

    D. 7

  22. Two consecutive odd integers are such that the sum of 5 times the smaller and twice the bigger integer is 222. Find the value of the smaller integer.

    A. 31

    B. 29

    C. 27

    D. 25

  23. Kwakye, Sabina and Owusu shared an amount of $12,000.00. Kwakye had 20% of the amount and the remaining amount was shared between Sabina and Owusu in the ratio 5 : 3 respectively. How much did Sabina receive?

    A. $2,400.00

    B. $3,600.00

    C. $6,000.00

    D. $9,600.00

  24. The third and ninth terms of an Arithmetic Progression (AP) are 9 and 27 respectively. Find the fifth term.

    A. 18

    B. 15

    C. -3

    D. -6

  25. If \(2\log_{x}({\frac{1-\sqrt{x}}{\sqrt{x}}})=0\), find the value of \(x\).

    A. \(\frac{1}{2}\)

    B. \(\frac{1}{4}\)

    C. 1

    D. 0

  26. A cylinder and a cone have the same volume. If the height of the cone is 24 cm, find the height of the cylinder.

    A. 4 cm

    B. 8 cm

    C. 12 cm

    D. 16 cm

  27. A variable \(P\) varies inversely as the square of \(Q\). If \(P = 5\) when \(Q = 6\), find \(Q\) when \(P = 1.8\).

    A. 5

    B. 10

    C. 15

    D. 20

  28. Factorize \(3 - 2x - x^2\).

    A. \((x - 3)(x + 1)\)

    B. \((x + 3)(x + 1)\)

    C. \((x - 3)(1 - x)\)

    D. \((x + 3)(1 - x)\)

  29. Make \(r\) the subject of the relation: \(\frac{1}{p} = \frac{b}{t} + \frac{c}{r}\)

    A. \(r = \frac{pcb}{t-pb}\)

    B. \(r = \frac{pct}{1 + pb}\)

    C. \(r = \frac{pc}{t - pb}\)

    D. \(r = \frac{pc}{t+pb}\)

  30. In \(\triangle PQR\), \(|QR| = 2\) cm, \(\angle PRQ = 60^\circ\) and \(\angle PQR = 90^\circ\). Find \(|PR|\).

    A. \(4\sqrt{3}\) cm

    B. 4 cm

    C. \(2\sqrt{3}\) cm

    D. \(\sqrt{3}\) cm

  31. A sector of a circle of radius 21 cm subtends an angle of \(120^\circ\) at the centre. Find the length of the arc of the sector. [Take \(\pi = \frac{22}{7}\)]

    A. 11 cm

    B. 22 cm

    C. 44 cm

    D. 66 cm

  32. The population of a town increases by 2% every year. After 2 years, its population is 83,232. Calculate, correct to the nearest thousand, the original population.

    A. 80,000

    B. 81,000

    C. 82,000

    D. 83,000

  33. A profit of 8% was made when an article was sold for $500.00. At what price should it be sold to make a profit of 16%?

    A. $537.04

    B. $540.00

    C. $373.04

    D. $580.00

  34. The sets \(M = \{x : 2 \leq x \leq 6\}\) and \(N = \{x : 4 \leq x \leq 8\}\) are subsets of \(\mu = \{x : 1 \leq x \leq 10, \text{where } x \text{ is an integer}\}\). Find \(M' \cap N'\).

    A. {1, 7, 8}

    B. {1, 8, 9}

    C. {1, 9, 10}

    D. {1, 8, 10}

  35. Given that \(\sin(x - 46)^\circ = \cos 62^\circ\), find the value of \(x\).

    A. 46

    B. 64

    C. 74

    D. 90

  36. Given that \(\log_4 16 = \log_y 36\), find the value of \(y\).

    A. 3

    B. 4

    C. 6

    D. 8

  37. In the diagram, \(\angle PMQ = 34^\circ\) and \(\angle NQM = 28^\circ\). Find \(\angle QTN\).

    A. \(152^\circ\)

    B. \(146^\circ\)

    C. \(124^\circ\)

    D. \(118^\circ\)

  38. Find \(\angle MPN\).

    A. \(62^\circ\)

    B. \(56^\circ\)

    C. \(34^\circ\)

    D. \(28^\circ\)

  39. For what value of \(x\) is \(\frac{3x + 2}{2x + 1}\) undefined?

    A. \(\frac{1}{2}\)

    B. \(-\frac{1}{2}\)

    C. \(-\frac{2}{3}\)

    D. \(\frac{2}{3}\)

  40. In the diagram, P, Q, R and S are points on the circle with centre O. \(\angle QRS = (5x)^\circ\) and \(\angle QOS = (6x + 24)^\circ\). Find \(\angle QPS\).

    A. \(75^\circ\)

    B. \(87^\circ\)

    C. \(116^\circ\)

    D. \(150^\circ\)

  41. In the diagram, O, R, S and T are points on the circle with centre O, \(\angle STR = 37^\circ\) and \(\angle QRT = 59^\circ\). Find \(\angle SPR\).

    A. \(121^\circ\)

    B. \(96^\circ\)

    C. \(84^\circ\)

    D. \(59^\circ\)

  42. John sold an article for ₦105,000.00 at a loss of 4%. Find the cost price of the article.

    A. ₦100,800.00

    B. ₦105,400.00

    C. ₦109,200.00

    D. ₦109,375.00

  43. In the diagram, \(SR \parallel UW\), \(\angle VUT = y\), \(\angle SXT = 45^\circ\) and \(\angle VTU = 20^\circ\). Find the angle marked \(x\).

    A. \(135^\circ\)

    B. \(65^\circ\)

    C. \(45^\circ\)

    D. \(20^\circ\)

  44. Find the angle marked \(y\).

    A. \(20^\circ\)

    B. \(25^\circ\)

    C. \(65^\circ\)

    D. \(135^\circ\)

  45. What is the gradient of the line \(7x - 5y = 3\)?

    A. \(\frac{5}{7}\)

    B. \(\frac{7}{5}\)

    C. \(-\frac{5}{7}\)

    D. \(-\frac{7}{5}\)

  46. The Venn diagram illustrates the information about the sets P = {Primates}, C = {Smart People} and M = {My friends}. Which of the following is a valid conclusion from the diagram?

    A. All my friends are primates.

    B. Some of my friends are smart.

    C. All smart people are my friends.

    D. None of my friends is smart.

  47. The table shows the ages of students in a class. Find, correct to the nearest whole number, the average age of the students.

    Age (years) 13 14 15 16 17
    Number of Students 3 14 13 8 3

    A. 13

    B. 14

    C. 15

    D. 16

  48. What is the median age?

    A. 14

    B. 15

    C. 16

    D. 17

  49. The angle of elevation of the top P of a ladder PQ from its base Q, 12 m away from a wall is \(36^\circ\). Find correct to the nearest metre, the length of the ladder.

    A. 9 m

    B. 12 m

    C. 15 m

    D. 17 m

  50. A fair dice is thrown once. Find the probability of obtaining an odd number or a prime number.

    A. \(\frac{5}{6}\)

    B. \(\frac{2}{3}\)

    C. \(\frac{1}{2}\)

    D. \(\frac{1}{3}\)

Post a Comment

Previous Post Next Post