Initial Value Problem: Existence and Uniqueness Theorem for IVP Explained Step-by-Step

Initial Value Problem (IVP) - Existence and Uniqueness Proof

To solve the Initial Value Problem:

$$ X'(t) = f(X(t), t), \quad X(t_0) = X_0 $$

Assume that the solution exists, i.e.,

$$ X'(t) = f(X(t), t) $$

Take integral on both sides:

$$ \int_{t_0}^{t} X'(s) \, ds = \int_{t_0}^{t} f(X(s), s) \, ds $$

By Fundamental Theorem of Calculus, the above becomes:

$$ X(t) - X_0 = \int_{t_0}^{t} f(X(s), s) \, ds $$

So:

$$ X(t) = X_0 + \int_{t_0}^{t} f(X(s), s) \, ds \tag{ii} $$

Hence, \(X(t)\) is a solution of IVP (i) iff it is a solution of (ii).

The rest of (ii) again using Leibniz's rule:

$$ F'(t) = \frac{d}{dt} \left( \int_{u(t)}^{v(t)} f(x,t) \, dx \right) \Rightarrow f(x,t) = f(x,t) \cdot \frac{dx}{dt} + \int_{u(t)}^{v(t)} \frac{\partial f(x,t)}{\partial t} \, dt $$

Given:

$$ X(t) = X_0 + \int_{t_0}^{t} f(X(s), s) \, ds $$

Then:

$$ X'(t) = \frac{d}{dt} \left( X_0 + \int_{t_0}^{t} f(X(s), s) \, ds \right) $$

Let:

$$ \frac{\partial}{\partial t} X(t) = 0 \tag{iii} $$

Now solving the integral part:

$$ F'(t) = \frac{d}{dt} \int_{t_0}^{t} f(X(s), s) \, ds $$

$$ F'(x) = f(x, h(x)) L'(x) + f(u, g(x)) g'(x) $$

Let:

\( h(x) = t \Rightarrow h'(x) = 1 \), \( g(x) = t_0 \Rightarrow g'(x) = 0 \)

So:

$$ F'(x) = f(x,t) \cdot 1 - f(x,t_0) \cdot 0 = f(x,t) $$

$$ f'(x) = f(x,t) \tag{iv} $$

And from (iii) and (iv):

$$ X'(t) = 0 + f(X(t), t) \Rightarrow X'(t) = f(X(t), t) \tag{v} $$

Also,

$$ X(t_0) = X_0 + \int_{t_0}^{t_0} f(X(s), s) \, ds = X_0 $$

Therefore, equation (ii) implies (i). This completes the proof.

Post a Comment

Previous Post Next Post